

Computer Engineering Department

November 04, 2014

LAB-3:

Rails Introduction

COM401
Software Engineering

Laboratory

COM401-Software Engineering Lab

Lab-3 1 Gediz University

Time: 2 lab hours

Objectives:

Practice with

 Ruby Symbols

 Routes

 MVC pattern

 CRUD operations

 Forms

Learn how to

 run rottenpotatoes application on saasbook virtual machine

 build your own Rails application : myrottenpotatoes

Lab Outcomes:

 Practice with RubyMine IDE and Rails basics.

Exercise:

A- Run and examine “rottenpotatoes” application

 In this part, we will run and examine rottenpotatoes application on saasbook image. We assume

that you have already installed VirtualBox and downloaded the saasbook image. To use your

virtual machine, follow the steps.

1. Run VirtualBox and click the New button to create a new VM.

2. When the VM Wizard appears, select the following options:

o operating system: Linux

o version: Ubuntu

o RAM base memory: at least 1024 MB

o Select "Use existing hard disk" and choose the .vdi file you downloaded in step 2.
1

 After starting the machine, we can make rottenpotatoes application run by following the

steps:

 a) Open a terminal window, then write

 cd Documents

 cd rottenpotatoes

1
 Run the VMimage , http://www.saasbook.info/bookware-vm-instructions

COM401-Software Engineering Lab

Lab-3 2 Gediz University

 b) In this folder, start rails server by writing to the terminal window

 rails start (or rails s)

 c) Then open a browser and enter the address:

http://localhost:3000/movies

 d) Examine the folder structure by considering MVC pattern.

File/Folder Purpose

app/
Contains the controllers, models, views, helpers, mailers and assets for your

application.

bin/
Contains the rails script that starts your app and can contain other scripts you use to

deploy or run your application.

config/ Configure your application's runtime rules, routes, database, and more.

config.ru Rack configuration for Rack based servers used to start the application.

db/ Contains your current database schema, as well as the database migrations.

Gemfile

Gemfile.lock

These files allow you to specify what gem dependencies are needed for your Rails

application. These files are used by the Bundler gem.

lib/ Extended modules for your application.

log/ Application log files.

public/ The only folder seen to the world as-is. Contains the static files and compiled assets.

Rakefile

This file locates and loads tasks that can be run from the command line. The task

definitions are defined throughout the components of Rails. Rather than changing

Rakefile, you should add your own tasks by adding files to the lib/tasks directory of

your application.

README.rdoc
This is a brief instruction manual for your application. You should edit this file to tell

others what your application does, how to set it up, and so on.

test/ Unit tests, fixtures, and other test apparatus.

tmp/ Temporary files (like cache, pid and session files)

http://localhost:3000/movies

COM401-Software Engineering Lab

Lab-3 3 Gediz University

File/Folder Purpose

vendor/
A place for all third-party code. In a typical Rails application, this includes Ruby

Gems and the Rails source code (if you optionally install it into your project).

2

 List of routes for the application can be seen below.

B- Build your own rottenpotatoes application : “myrottenpotatoes”

It is easy to create a Rails application including CRUD operations in by following steps below via

RubyMine IDE.

Step 1- Create a new Rails application

(Note that it is possible to create a Rails project from command line by writing

 rails new myrottenpotatoes)

This step leads to creation of a typical Rails application folder structure.

Step 2- Edit myrottenpotatoes/config/routes.rb by adding movies resource.

resource route (maps HTTP verbs to controller actions automatically):

 resources :movies

Step 3- List all routes for this resource

Tools/ Run Rake Task.. / routes

(Note that it is possible to do it from command line by writing rake routes)

2
 http://guides.rubyonrails.org/v4.0.8/getting_started.html

http://guides.rubyonrails.org/v4.0.8/getting_started.html

COM401-Software Engineering Lab

Lab-3 4 Gediz University

You should see a list similar to the below.

Step 4- Create a Movie model

Tools / Run Rails Generator .. / model /

Movie title:string rating:string description:text release_date:datetime

After this step, active record is invoked and two ruby file is created two ruby files shown in the

figure below.

Step 5 – Create Movie Table

After preparation of Movie schema, we can create the Movie table.

Tools / Run Rake Tasks.. / db:migrate

After migration command, the table is created on the db , and you should see an output similar to

the below.

You can use sqliteman to open this sqlite3 db.

Step 6 – Add some test data into the Movies Table

First, open a rails console : Tools / Run Rails Console…

COM401-Software Engineering Lab

Lab-3 5 Gediz University

Copy-paste the following lines on the console.

#create a sample movies array

more_movies = [

 {:title => 'Aladdin', :rating => 'G',

 :release_date => '25-Nov-1992'},

 {:title => 'When Harry Met Sally', :rating => 'R',

 :release_date => '21-Jul-1989'},

 {:title => 'The Help', :rating => 'PG-13',

 :release_date => '10-Aug-2011'},

 {:title => 'Raiders of the Lost Ark', :rating => 'PG',

 :release_date => '12-Jun-1981'}

]

Movie.send(:attr_accessible, :title, :rating, :release_date)

more_movies.each do |movie|

 Movie.create!(movie)

end

Step 7- Create Movies controller

Tools/Run Rails Generators/ Controller/ movies

This operation leads to creation of the following folders and files.

Step 8 - Add an index method the the movies_controller.rb to obtaining all movie records from

database. (remember routes !)

def index

 @movies = Movie.all

end

Step 9 – Create a view(index.html.erb or index.html.haml) to match with this index method

(remember : convention over configuration..)

<!DOCTYPE html>

<html>

COM401-Software Engineering Lab

Lab-3 6 Gediz University

 <body>

 <h2>All Movies</h2>

 <table>

 <thead>

 <tr>

 <td> Movie Title </td>

 <td> Rating </td>

 <td> Release Date </td>

 <td> More Info </td>

 </tr>

 </thead>

 <tbody>

 <% @movies.each do |movie| %>

 <tr>

 <td> <%= movie.title %> </td>

 <td> <%= movie.rating %> </td>

 <td> <%= movie.release_date %> </td>

 <td> More about <a href= "movies/<%= movie.id %>">

<%= movie.title %> </td>

 </tr>

 <%end%>

 </tbody>

 </table>

 </body>

</html>

Step 10 – Start your server(WEBrick) and test your web application in your browser

 http://localhost:3000/movies

Just a remainder :

http://localhost:3000/movies

COM401-Software Engineering Lab

Lab-3 7 Gediz University

Step 11 - Add an show method the the movies_controller.rb to obtaining a specific movie record

from database. (remember routes !)

 def show

 id = params[:id] # retrieve movie ID from URI route

 @movie = Movie.find(id) # look up movie by unique ID

 end

Step 12 - Create a new view(show.html.erb or index.html.haml) to match with this show method

(remember : convention over configuration..)

<h2>Details about <%= @movie.title %> </h2>

 details

 Rating: <%= @movie.rating %>

 Released on: <%= @movie.release_date.strftime("%B %d, %Y")%>

<h3> Description: </h3>

<p> description <%= @movie.description %> </p>

<a href="<%= movies_path %>">Back to movie list

Step 13 - Let’s allow the users to add new movies

 First, add a new link whose title “Add a new Movie”

 Add the following line before closing body tag in the index.html.erb file

<p> Add a new Movie </p>

 Add a new method to the movies_controller.rb

def new

end

 Create a new view(new.html.erb or new.html.haml) to match with this new method

(remember : convention over configuration..)

<h2> Create New Movie </h2>

<%= form_tag movies_path, :method => :post do %>

 <%= label :movie, :title, 'Title' %>

 <%= text_field :movie, :title %>

 <%= label :movie, :rating, 'Rating' %>

 <%= select :movie, :rating, ['G','PG','PG-13','R','NC-17'] %>

 <%= label :movie, :release_date, 'Released On' %>

 <%= date_select :movie, :release_date %>

 <%= submit_tag 'Save Changes' %>

<% end %>

 Add a create method the the movies_controller.rb to save the movie to the database

def create

COM401-Software Engineering Lab

Lab-3 8 Gediz University

 @movie = Movie.new(movie_params)

 @movie.save

 flash[:notice] = "#{@movie.title} was successfully created."

 redirect_to movies_path

 end

 private

 def movie_params

 params.require(:movie).permit(:title, :rating, :release_date)

 end

 Add these lines inside the body tag of app/views/layout/application.html.erb
<%= yield %>

<% if flash[:notice] %>

<div class="message" id="notice">

<%= flash[:notice] %>

</div>

<% elsif flash[:warning] %>

<div class="message" id="warning">

<%= flash[:warning] %>

</div>

<% end %>

Step 14 - Let’s allow the users to update and delete movies

 First, add a new links whose title “Edit info” and “Delete Movie”

 Add the following line before “Back to movie list” link in the show.html.erb file

<%= link_to 'Edit info', edit_movie_path(@movie) %>

<% # This Delete link will not really be a link, but a form: %>

<%= link_to 'Delete', movie_path(@movie), :method => :delete %>

 Add edit, update and destroy methods to the movies_controller.rb

def edit

 @movie = Movie.find params[:id]

 end

 def update

 @movie = Movie.find params[:id]

 @movie.update!(movie_params)

 flash[:notice] = "#{@movie.title} was successfully updated."

 redirect_to movie_path(@movie)

 end

 def destroy

 @movie = Movie.find(params[:id])

 @movie.destroy

 flash[:notice] = "Movie '#{@movie.title}' deleted."

 redirect_to movies_path

 end

 Create a new view(edit.html.erb or edit.html.haml) to match with these methods

(remember : convention over configuration..)

<h2>Edit Movie</h2>

<%= form_tag movie_path(@movie), :method => :put do %>

 <%= label :movie, :title, 'Title' %>

COM401-Software Engineering Lab

Lab-3 9 Gediz University

 <%= text_field :movie, 'title' %>

 <%= label :movie, :rating, 'Rating' %>

 <%= select :movie, :rating, ['G','PG','PG-13','R','NC-17'] %>

 <%= label :movie, :release_date, 'Released On' %>

 <%= date_select :movie, :release_date %>

 <%= submit_tag 'Save Changes' %>

<% end %>

Step 15 - Provide a better web pages using style sheets.

