
Lab-9

Res.Asst Arzum KARATAŞ December 23,2014

 Metrics

 An Example from the Lecture Notes

 Wet your feet!

 Project Evaluation Session

 Helpful Links

 Q&A

2

In software development, a metric is the measurement of
a particular characteristic of a program's performance or
efficiency. Similarly in network routing, a metric is a
measure used in calculating the next host to route a
packet to. A metric is sometimes used directly and
sometimes as an element in an algorithm . In
programming, a benchmark includes metrics.[1]

Benefits of Metrics
 You can measure the complexity of rails code
 Creates a “hit list” of most complex methods
 Reveals hidden issues like bugs and other complexities
 Examine worst offenders
 Refactoring complex methods
 Creates smaller, easier to understand methods

3 [1] http://whatis.techtarget.com/definition/metric

http://whatis.techtarget.com/definition/algorithm
http://searchcio-midmarket.techtarget.com/definition/benchmark

 It is created by Jake Scruggs

 Metric_fu is a compilation of several different

tools that provides reports. This show which

parts of your rails code might need

refactoring.

4

 Flog – measures code complexity
 Saikuro – measures cyclomatic complexity
 Flay – measures structural similarities
 Reek – spots code smells
 Roodi – finds lots of general problems(like

design issues)
 Churn – identifies files that changes too often
 Rails best practices – code metric tool for rails
 Cane - spots code quality threshold violations
 HotSpot- Meta analysis of your metrics to find

hotspots in the code

5

The report Flog generates lists each file in your
application in order of its complexity. It’s worth
scrolling though the report and looking at the
files that score highly in the Highest Score
column.

6

7

8

You have to refactor the files whose highest score is > 40

9

 Reek is a similar tool to Flay in that it looks
for parts of your code that need work.

 It detects “code smells” in your application
and reports on them.

 Common smells include code duplication,
long methods and repeated calls.

 Reek provides a useful description of each
problem which should make it easy for you to
find them and refactor the offending code.

10

11

12

13

14

15

 measures cyclomatic complexity

 (should be < 10)

16

The complexity M is then defined as M = E − N + 2P,
[2]

[2] : http://en.wikipedia.org/wiki/Cyclomatic_complexity

E : # of edges on the graph

N : # nodes on the graph

P : # of connected parts

http://en.wikipedia.org/wiki/Cyclomatic_complexity#cite_note-mccabe76-3
http://en.wikipedia.org/wiki/Cyclomatic_complexity#cite_note-mccabe76-3
http://en.wikipedia.org/wiki/Cyclomatic_complexity#cite_note-mccabe76-3

17

You do not need to refactor because complexity for each method <= 10

18

19

20

21

22

23

24

25

26

27

 You can read the following article to see how
to do refactoring in RubyMine. (Optional)

http://pivotallabs.com/automated-
refactorings-in-rubymine/

28

http://pivotallabs.com/automated-refactorings-in-rubymine/
http://pivotallabs.com/automated-refactorings-in-rubymine/
http://pivotallabs.com/automated-refactorings-in-rubymine/
http://pivotallabs.com/automated-refactorings-in-rubymine/
http://pivotallabs.com/automated-refactorings-in-rubymine/
http://pivotallabs.com/automated-refactorings-in-rubymine/
http://pivotallabs.com/automated-refactorings-in-rubymine/
http://pivotallabs.com/automated-refactorings-in-rubymine/

 Examine the blogHeroku Project

29

 https://prezi.com/iyioiddjyccu/metrics-
based-refactoring-what-to-do-with-your-
code-metrics/

 http://www.confreaks.com/videos/377-
rubyconf2010-hotspots-with-metric-fu

 http://asciicasts.com/episodes/166-metric-
fu

30

https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
https://prezi.com/iyioiddjyccu/metrics-based-refactoring-what-to-do-with-your-code-metrics/
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://www.confreaks.com/videos/377-rubyconf2010-hotspots-with-metric-fu
http://asciicasts.com/episodes/166-metric-fu
http://asciicasts.com/episodes/166-metric-fu
http://asciicasts.com/episodes/166-metric-fu
http://asciicasts.com/episodes/166-metric-fu
http://asciicasts.com/episodes/166-metric-fu
http://asciicasts.com/episodes/166-metric-fu

31

32

33

