o

Ruby-Partll

October 21,2014

Agenda

» Blocks

» method_missing
» Modules

» Regex

» Ruby OOP

> |[nheritance
o Access Restriction

» Mockups
» Conclusion
» Hmw

Blocks

» A block is a nameless chunk of code that lives
inside a control statement, loop, method
definition, or method call.

» In Ruby, blocks can be created two ways: with
braces or with a do/end statement

Ex: (1..10).each {|x| print x*2," "}

Ex : def block example
puts "Beglinning of the block"
yield
yield
puts "End of the block"

end
block scope{puts " I am 1in the block"}

Blocks(cont.)

-built in to many objects in ruby
a. each

h. detect
numbers = [-1,5,6,7,3,41,22]
number = numbers.detect {|x| x > 10}
print number

c. select
odds= numbers.select{|x| x % 2 == 1}
p odds

d. collect

arr = ["the","software","engineering”, "Course"]
arr_up= arr.collect{|x| x.upcase}
p arr_up

method_missing

In most languages when a method cannot be found and error is thrown and the
program crashes, but in Ruby ..

Ex: class MathTest

def sum(a,b)
return a+b
end

def sub(a,b)
return a-b
end

def mul(a,b)
return a*b
end
end

mt = MathTest.new()
puts mt.sum(3,5)
puts mt.sub(3,5)

method_missing(cont.)

def method_missing(name, *args)
puts "l don't know the method #{name}"
end

mt = MathTest.new()
outs mt.sum(3,5)
yuts mt.sub(3,5)
outs mt.mul(3,5)
huts mt.div(3,5)

Modules(later ..)

» basically a set of methods
» You can't instantiate a module

» You can include as many modules as you want into one
class.

» Modules are extremely popular in the Ruby community

» One problem with modules is that in order to unit test
them you either test every single method or you need to
create a dummy class that includes the module and then
you test an object of this class.

» Another problem is that modules introduce hidden
dependencies. You can't easily create an object and
replace the module with a mock in order to test the
collaboration.

» The good thing about modules is that it's very easy to use.
When you see a common set of methods in two classes,
you extract it to a module and the duplication dlsappears

(later ..)

Regular Expressions

» Regular expressions, though cryptic, is a
powerful tool for working with text. Ruby has
this feature built-in.

» It's used for pattern-matching and text
processing.

» A regular expression is simply a way of
specifying a pattern of characters to be
matched in a string.

» In Ruby, you typically create a regular
expression by writing a pattern between slash
characters (/pattern/).

Regexes (cont.)

» objects from Regexp class

» Syntax : / pattern/

G

» .match method

EX :

puts "Ruby: Regular Expressions” =~ /egu/
puts "Ruby: Regular Expressions”.match /egu/

Regexes (cont.)

Mostly used :

A = start of line

$ > end of line

| = or

d->d

\d = digit

\D - non-digit

\s = white space char.

\d+ >matches one or more numerical digits.
\[=2 square bracket

\] = closing square bracket

10

Regexes(cont.)

[abc] A single character of- a, b, orc (...) Capture everything enclosed
[*abe] Any single character except: a, b, orc (alb) aorb

[a-z] Any single character in the range a-z a? Zero or one of a

[a-zA-Z] Any single characterin the range az or A-Z ~ a* Zero or more of a

" Start of line a+ One or more of a

§ End of line a{3} Exactly 3 of a

A Start of string a{3,} 3 or more of a

\z End of string a{3,6} Between3andb6ofa

\s
\S
\d
\D
\w
\W
\b

Any single character

Any whitespace character

Any non-whitespace character

Any digit

Any non-digit

Any word character (letter, number, underscore)
Any non-word character

Any word boundary

11

Regexes (cont.)

fals character 'a'

AW character 'J/' (/\?*+{[.]()"% need to be escaped with %)
£of any character {(including newline for f.../m)

fads O..1 "a°

fa*®y O..m "a°

Fa=/ T..m "a'

Ffa{2,F}F 2..7 "a'

faf{2.}f Z2..m 'a’

Ffaf{.7}f 0..7 "a°

Fa?bc?S 'b' or "ab' or 'bc”" or "abc’

Ffa|lbcs 'a' aor "bc’

flalb)cs ‘ac” or "hc'

f[abc]lf a or b or c

F[abec] s any character except a or b or

fa-cF-H]S a or b or ¢ or F or G or H

Shd s any digit [0-9]

Mo/ any letters, numbers or underscores [a-zA-Z0-9_17
s any whitespace character (i1ncludinmg newline for f.../ m)
Dy any character except digits

SN any character except letters,., numbers or underscores
AR any character except whitespace

Fabe s abc aftter line start

Fabc% /s abc before linme end

Regexes (cont.)

» A\d+\s+ = first column of numbers

» (\d{2})$ = Any sequence of exactly
two numerical digits at the end of each line

Just a Ruby Regular Expression Editor, but on the net there are
many more.

http://rubular.com/

13

Regexes (cont.)

» Ruby String Substitution:gsub, gsub! Methods
my_string = "Welcome to Javal!”
my_string.gsub!("Java”, "Ruby")

puts my_string

| operator is used for in—-place operations.

14

Regexes (cont.)

» Accessing captures

Ex : puts "al23 456 789" =~ /(\d\d)(\d)/

Ex: puts "al23 456 789" =~ /(\d\d)(\d)\s(\d)/
puts [$1, $2, $3]

$n contains the n-th (...) capture of the last
match, $~ contains MatchData object

» Accessing all matches
outs "123 456 789".scan(/\d+/)

15

Object Oriented Programming

In Ruby, a class can only inherit from a single other
c/lass. Some other languages support multiple
inheritance, a feature that allows classes to inherit
features from multiple classes, but Ruby doesn't directly
support this! (but modules!)

Ex: class Person
def initialize(hame, surname)
@name = name
@surname = surname
end
end

person = Person.new("Arzum”," Karatas")
LD

16

OOP- to String method

» The "ToString" method, to_s
class Person
def initialize(name, surname)
@name = name
@surname = surname
end
def to_s
"Person: #@name #@surname"
end
end

person = Person.new("Arzum"," Karatas")
print person

17

OOP - Inheritance

class Employee < Person

def initialize(name, surname, title)
super(name,surname)
@title= title
end
def to_s
super + ", #@title"
end
end
employee = Employee.new("Arzum”
print employee

, Karatas',

TA")

18

OOP - Inheritance (cont.)

Let’s try to use reach name attribute
print employee.name

» To grant access to read a variable we declare it
after "attr_reader "

Ex: attr_reader :name, :surname

» To grant access to write a variable we declare it
after "attr_writer"

Ex: attr_writer :title

19

OOP - Inheritance(cont.)

class Employee < Person

def initialize(name, surname, title)
super(name,surname)

@title= title
end
def to_s

super + ", #@title"
end

attr_reader :name, :surname
attr_writer :title

end

employee = Employee.new("Arzum”, "Karatas", "TA")
puts employee

puts employee.name

employee.title = "Teaching Assistant”

auts employee

20

OOP - Inheritance(cont.)

» Assume that you have a .rb file for each class.
How you can handle with this situation ?

Remember from PHP ?

21

OOP - Inheritance(cont.)

require "Person”

require_relative "Person”

.

22

OOP - Inheritance(cont.)

Question : Create a Vehicle class, then add a
class variable named "no_of_vehicles" that can

keep track of the number of objects created
that inherit from Vehicle.

Next, create a method to print out the value of
this class variable as well.

23

OOP - Inheritance(cont.)

vehicle.rb

class Vehicle
@@no_of_vehicles = 0

def no_of_vehicles

puts "This program has created #{@@no_of_vehicles}
vehicles"

end

def initialize
@@no_of_vehicles +=1
end
end

24

OOP - Inheritance(cont.)

» car.rb
require_relative "Vehicle"
class Car < Vehicle

end

» bike.rb
require_relative "Vehicle"
class Bike < Vehicle

end

25

OOP - Inheritance(cont.)

» test.rb
require_relative "Car”
require_relative "Bike"

my_car = Car.new()
my_bike = Bike.new()

puts my_car.no_of_vehicles
puts my_bike.no_of_vehicles

26

OOP -Access Modifiers

» public, private, protected

Question: Create a class titled as ‘Person’ with
attributes name and age. Do NOT make the age
getter public, so jack.age will raise an error.
Create a older_than? method, that you can call
like in the following.

puts "Jack is older than Sally !" if jack.older_than?(sally)

27

OOP -Access Modifiers(cont.)

class Person
def initialize(name, age)
@name = name
@age = age
end

def older_than?(other_person)
age > other_person.age
end

protected

def age
@age
end
end

jack = Person.new("Jack", 43)
sally = Person.new("Sally", 24)
puts "Jack is older than Sally " if jack.older_than?(sally)

28

OOP-Method Overriding

class Animal
def move
"l can move"
end
end

class Bird < Animal
def move
super + " by flying"
end
end

class Fish < Animal
def move

super + " by swimming"
end

29

OOP-Method Overriding(cont.)

class Snake < Animal
def move
super + " by slithering”
end
end

twitty = Bird.new()
twitty.move

fishy = Fish.new()
fishy.move

dui = Snake.new()
dui.move

30

OOP -Private Methods

class Animal

def move
"I can move"
end

def secret
puts "this method is private"
end
private :secret
end

class Snake < Animal
def move
puts super + " by slithering"
end
end

sammy= Snake.new()
RNednove

31

Conclusion

» OOP in Ruby

» Blocks

» method_missing
» Regexes

32

Mock-ups
i"\' Indigo™

DISCOVER THE
RIGHT DESIGN,
CODE-FREE

=
Last year’s mockup examples

33

https://sites.google.com/site/amsteamproject/file-cabinet
https://sites.google.com/site/amsteamproject/file-cabinet
https://sites.google.com/site/amsteamproject/file-cabinet
https://sites.google.com/site/amsteamproject/file-cabinet
https://sites.google.com/site/amsteamproject/file-cabinet
http://software-engineering4.webnode.com.tr/projenin-isleyisi/
http://software-engineering4.webnode.com.tr/projenin-isleyisi/
http://software-engineering4.webnode.com.tr/projenin-isleyisi/
http://software-engineering4.webnode.com.tr/projenin-isleyisi/
http://software-engineering4.webnode.com.tr/projenin-isleyisi/
http://software-engineering4.webnode.com.tr/projenin-isleyisi/
http://fibilgisayar.weebly.com/proje-304351leyi351i.html
http://fibilgisayar.weebly.com/proje-304351leyi351i.html
http://fibilgisayar.weebly.com/proje-304351leyi351i.html
http://fibilgisayar.weebly.com/proje-304351leyi351i.html

Hmw

» You will have an homework!

Due Date : November 02, Monday at 8 pm

34

Acknowledgements

This slides is collected from many sources.
Thanks to all of their authors.

35

