
Software Survivability

Carnegie Mellon University

Software Engineering Institute

Survivability Concepts

Carnegie Mellon University

Software Engineering Institute

Survivability Motivation

• Growing societal dependence on complex, large-
scale, networked systems

– Sectors: commercial, government, defense, ...

– Infrastructure: telecom, transportation, utilities, …

– Interdependencies and cascade failures

• Serious consequences of system compromises and
failures

• Presidential Commission on Critical Infrastructure
Protection

Carnegie Mellon University

Software Engineering Institute

• Expanding network boundaries and connectivity

• Blurring of Intranets and Extranets

• Heterogeneous mix of participants with varying trust

• Lack of central administrative control

• Unknown components: COTS, Java, …

• Point security solutions: PKI, VPN, IDS, firewalls, ...

The fundamental limitation of security:

No amount of security can guarantee a system

will not be penetrated

The Changing System Environment

Carnegie Mellon University

Software Engineering Institute

 Survivability is the capability of a system to fulfill its

mission, in a timely manner, in the presence of

attacks, failures, or accidents.

• Focus is on the continuity and recovery of the system

mission

• Imperfect defenses are assumed

Survivability Defined I

Carnegie Mellon University

Software Engineering Institute

Survivability Defined II

• Survivability differs from conventional security

– Security focuses on static perimeter defenses

– Survivability focuses on design and operation to

maintain mission support in adverse environments

• Survivability differs from dependability

– Dependability focuses on random faults

– Survivability focuses on coordinated attacks by

intelligent adversaries

Carnegie Mellon University

Software Engineering Institute

The “Three R’s” of Survivability

• Resistance

– Capability to deter attacks

• Recognition

– Capability to recognize attacks and extent of

damage

• Recovery

– Capability to provide essential services/assets

during attack and recover full services after attack

The Myth

 “Our site is safe”:

– We have firewalls in place

– We encrypt our data

– We have a privacy policy

Data Thief Architecture

App.
Database

Local

DB

Vulnerable

Application

Attack string

Form values
appended with extra

SQL statement

SQL-Injected query

Contains an
OPENROWSET

statement

SQL injected OPENROWSET
statement causes remote DB to
connect back to attackers DB,

sending back useful data

Know Your Enemy

Application Security Defects

• Frequent

• 3 out of 4 business websites are
vulnerable to attack (Gartner)

• Pervasive

• 75% of hacks occur at the
Application level (Gartner)

• Undetected

• QA testing tools not designed to

detect security defects in

applications

• Manual patching - reactive, time

consuming and expensive

• Dangerous

• When exploited, security defects

destroy company value and

customer trust

167 Audits conducted – 98% vulnerable: all had

firewalls and encryption solutions in place…

Pressures on the Application Lifecycle

• Time-to-Market

• Bringing new applications to market quickly

• Complexity is Growing

• Increasing application lifecycle complexity

• Increasing Business Risks Driven by

Security Defects

• Hacker activity increasing

• Government scrutiny and regulation

increasing

• Liability precedents for security defects

• Costs Escalate Dramatically the longer

you wait to Find and Fix

• Bad software costs the economy $59.5 billion

a year- cost of breakdowns and repairs
(Nat. Institute of Standards & Technology, May 2002)

Financial Services Application

Cost Increases Later in the Lifecycle

Security is Addressed

Cost to Fix dramatically increases

the longer you wait to test

Web Application Vulnerabilities

Without any protection,

holes and backdoors exist at every layer waiting to be exploited

Web Server

User Interface Code

Frontend Application

Backend Application

Database

Data
Invalid Data can

exploit weakness

in the application

acting as escape

holes resulting in

access to

unauthorized

accounts, O/S

network, sensitive

data and may

result in an

application denial

of service Valid Input

HTML/HTTP

Browser

Invalid Input

HTML/HTTP

Types of Application Hacks

 Through a browser, a hacker can use the smallest bug

or backdoor to change, or pervert,

the intent of the application

Application Attack Types Negative Outcome Examples

Form field: collect data Buffer overflow Crash servers/close business

Online shopping Hidden fields eShoplifting

Sloppy code Backdoors/Debug options Download proprietary database

Text Field: collect data Cross Site scripting eHijacking - Get account info

Customer account Cookie poisoning Identity theft/illegal transactions

Database Parameter Tampering/SQL injection Fraud

 Front end Apps 3rd Party Misconfiquration Admin access

Web Server Published Vulnerabilities Crash site

 Backend Apps Stealth Commanding Site defacement

Web Server Forceful Browsing Access sensitive data

10 Types of Attacks:

Development Lifecycle

APP. BUFFER OVERFLOW

COOKIE POISONING

CROSS SITE SCRIPTING

HIDDEN MANIPULATION

STEALTH COMMANDING

3RD PARTY MISCONFIG.

KNOWN VULNERABILITIES

PARAMETER TAMPERING

BACKDOORS & DEBUG OPT.

FORCEFUL BROWSING

Development Operations

3rd party SW

Hidden Field Manipulation

• Vulnerability explanation:

The application sends data to the client using a hidden field in a form.

Modifying the hidden field damages the data returning to the web

application

• Why Hidden Field Manipulation:

Passing hidden fields is a simple and efficient way to pass information from

one part of the application to another (or between two applications)

without the use of complex backend systems.

• As a result of this manipulation :

The application acts according to the changed information and not

according to the original data

Hidden Field Manipulation - Example

Hidden Field Manipulation - Example

Hidden Field Manipulation - Example

Hidden Field Manipulation - Example

Backdoor & Debug options

• Vulnerability explanation:

The application has hidden debug options that can be activated by
sending a specific parameter or sequence

• Why Backdoor and Debug options:

– Leaving debug options in the code enables developers to find and fix
bugs faster

– Developers leave backdoors as a way of guaranteeing their access to
the system

• As a result of this manipulation :

Activation of the hidden debug option allows the hacker to have extreme
access to the application (usually unlimited).

Backdoor & Debug options - Example

Backdoor & Debug options - Example

Backdoor & Debug options - Example

HTTP

Request

Response

Server

www.mybank.com

(64.58.76.230)

Port: 80

Client PC

(10.1.0.123)

 Hypertext Transfer Protocol

• “Hypertext Transfer Protocol (HTTP) is a

communications protocol for the transfer of

information on intranets and the World Wide

Web. Its original purpose was to provide a

way to publish and retrieve hypertext pages

over the Internet.”

• http://en.wikipedia.org/wiki/HTTP

HTTP Request - GET

 Form data encoded in the URL

 Most common HTTP method used on the web

 Should be used to retrieve information, not for actions

that have side-effects

HTTP Request - GET

GET http://www.mysite.com/kgsearch/search.php?catid=1 HTTP/1.1

Host: www.mysite.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.13)

Gecko/20080311 Firefox/2.0.0.13

Accept:

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;

q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://www.mysite.com/

http://www.mysite.com/kgsearch/search.php?catid=1
http://www.mysite.com/kgsearch/search.php?catid=1

HTTP Request - GET

 http://www.google.com/search?hl=en&lr=&c2coff=1&rls=GGLG%2CGGLG%3A2005-
26%2CGGLG%3Aen&q=http%3A%2F%2Fwww.google.com%2Fsearch%3Fhl%3Den%26lr%3D%26c2cof
f%3D1%26rls%3DGGLG%252CGGLG%253A2005-
26%252CGGLG%253Aen%26q%3Dhttp%253A%252F%252Fwww.google.com%252Fsearch%253Fhl%2
53Den%2526lr%253D%2526c2coff%253D1%2526rls%253DGGLG%25252CGGLG%25253A2005-
26%25252CGGLG%25253Aen%2526q%253Dhttp%25253A%25252F%25252Fwww.google.com%25252F
search%25253Fsourceid%25253Dnavclient%252526ie%25253DUTF-
8%252526rls%25253DGGLG%25252CGGLG%25253A2005-
26%25252CGGLG%25253Aen%252526q%25253Dhttp%2525253A%2525252F%2525252Fwww%25252
52Egoogle%2525252Ecom%2525252Fsearch%2525253Fsourceid%2525253Dnavclient%25252526ie%25
25253DUTF%2525252D8%25252526rls%2525253DGGLG%2525252CGGLG%2525253A2005%2525252
D26%2525252CGGLG%2525253Aen%25252526q%2525253Dhttp%252525253A%252525252F%252525
252Fuk2%252525252Emultimap%252525252Ecom%252525252Fmap%252525252Fbrowse%252525252
Ecgi%252525253Fclient%252525253Dpublic%2525252526GridE%252525253D%252525252D0%252525
252E12640%2525252526GridN%252525253D51%252525252E50860%2525252526lon%252525253D%2
52525252D0%252525252E12640%2525252526lat%252525253D51%252525252E50860%2525252526se
arch%252525255Fresult%252525253DLondon%25252525252CGreater%252525252520London%252525
2526db%252525253Dfreegaz%2525252526cidr%252525255Fclient%252525253Dnone%2525252526lan
g%252525253D%2525252526place%252525253DLondon%252525252CGreater%252525252BLondon%2
525252526pc%252525253D%2525252526advanced%252525253D%2525252526client%252525253Dpub
lic%2525252526addr2%252525253D%2525252526quicksearch%252525253DLondon%2525252526addr3
%252525253D%2525252526scale%252525253D100000%2525252526addr1%252525253D%2526btnG%
253DSearch%26btnG%3DSearch&btnG=Search

HTTP Requests - POST

 Data is included in the body of the request.

 Should be used for any action that has side-effects

• Storing/updating data, ordering a product, etc…

HTTP Requests - POST

POST http://www.mysite.com/kgsearch/search.php HTTP/1.1

Host: www.mysite.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.13) Gecko/20080311

Firefox/2.0.0.13

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://www.mysite.com/

catid=1

http://www.mysite.com/kgsearch/search.php?catid=1

GET v. POST Security

 There information contained in parameters can tell a

user a lot about how your application works

 GET parameters are easily visible in the address bar

 POST parameters are hidden from the average user

• Users can still view source code

• Users can still view the packets

• Users can still intercept & modify web requests

Web Sites

Browser

No applications

Static pages

Hard coded links

Web Server

The Missing Piece

 Protection for the application itself

 Applications are vulnerable

 Developers lack tools and know how to build secure applications

 No amount of QA testing will capture all the security vulnerabilities

 Systematic failures in the application can be engineered by hackers

Web Applications

Browser

Web Servers

Presentation
Layer

Media Store

Very complex architectures,
multiple platforms, multiple
protocols

Database
Server

Customer
Identification

Access
Controls

Transaction
Information

Core Business
Data

Wireless

Web Services

Application
Server

Business
Logic

Content
Services

Network

HTTP

Web Application

Web Applications Breach the

Perimeter

Internet DMZ
Trusted
Inside

Corporate
Inside

HTTP(S)

Allows HTTP port 80

Allows HTTPS port 443

Firewall only
allows
applications
on the web
server to talk to
application
server.

Firewall only
allows application
server to talk to
database server.

IIS

SunOne

Apache

ASP

.NET

WebSphere

Java

SQL

Oracle

DB2

Browser

http://www.samba.org/samba/vendors/qube.jpg

“As an Application
Developer, I can
build great features
and functions while
meeting deadlines,
but I don’t know
how to develop my
web application
with security as a
feature.”

The Web Application
Security Gap

“As a Network Security
Professional, I don’t
know how my
companies web
applications are
supposed to work so I
deploy a protective
solution…but don’t
know if it’s protecting
what it’s supposed to.”

 Application
Developers and
QA Professionals
Don’t Know
Security

Why Web Application

Vulnerabilities Occur

 Security

Professionals

Don’t Know The

Applications

Web Application Vulnerabilities

“If builders built buildings the way programmers wrote programs, then

the first woodpecker that came along would destroy civilization.”

 -Weinberg's Second Law

 Technical (Syntactical) Vulnerabilities
• Result of insecure programming techniques

• Mitigation requires code changes

• Detectable by scanners

• http://example/order.asp?item=<script>alert(‘p0wned’)</scri
pt>&price=300.00

 Logical Vulnerabilities
• Result of insecure program logic

• Most often to due to poor decisions regarding trust

• Mitigation often requires design/architecture changes

• Detection often requires humans to understand the context

• http://example/order.asp?item=toaster&price=30.00

Web Application Vulnerabilities

Web Application Vulnerabilities

Platform

Administration

Application

Known Vulnerabilities

Extension Checking

Common File Checks

Data Extension Checking

Backup Checking

Directory Enumeration

Path Truncation

Hidden Web Paths

Forceful Browsing

Application Mapping

Cookie Manipulation

Custom Application
Scripting

Parameter Manipulation

Reverse Directory
Transversal

Brute Force

Application Mapping

Cookie Poisoning/Theft

Buffer Overflow

SQL Injection

Cross-site scripting

Web application vulnerabilities occur
in multiple areas.

Platform

Known
Vulnerabilities

Platform:

• Known vulnerabilities can be

exploited immediately with a

minimum amount of skill or

experience – “script kiddies”

• Most easily defendable of all

web vulnerabilities

• MUST have streamlined

patching procedures

Web Application Vulnerabilities

Administration

Extension Checking

Common File Checks

Data Extension
Checking

Backup Checking

Directory
Enumeration

Path Truncation

Hidden Web Paths

Forceful Browsing

Administration:
• Less easily corrected than known

issues

• Require increased awareness

• More than just configuration, must

be aware of security flaws in actual

content

• Remnant files can reveal

applications and versions in use

• Backup files can reveal source code

and database connection strings

Web Application Vulnerabilities

Administration Administration

 Application Programming:

• Common coding techniques do not
necessarily include security

• Input is assumed to be valid, but not
tested

• Unexamined input from a browser can
inject scripts into page for replay against
later visitors

• Unhandled error messages reveal
application and database structures

• Unchecked database calls can be
‘piggybacked’ with a hacker’s own
database call, giving direct access to
business data through a web browser

Application

Application Mapping

Cookie Manipulation

Custom Application
Scripting

Parameter Manipulation

Reverse Directory
Transversal

Brute Force

Application Mapping

Cookie Poisoning/Theft

Buffer Overflow

SQL Injection

Cross-site scripting

Web Application Vulnerabilities

Web Application Hacking - Results

Auditing & Testing

• The process

– Coverage of relevant business process

– Full inspection of client side scripts and comments

– Full inspection of application interfaces

– Analysis of potential vulnerabilities

– Testing of potential vulnerabilities

– Check for installation of known patches

• The knowledge

– Complete understanding of the application logic

– Complete knowledge of application manipulation methods

– Awareness of all the known patches issues

– Complete understanding of most secure configuration of all tools

Auditing & Testing – The Problem

• Multiple points of people failure

– Development, QA, Operations, Vendor software, Outsourcing

• New third party bugs discovered every day

– site exposed during patch latency

• Site Complexity

– many line of codes and application interactions

• Compressed application development cycle

– time to market needs will impact development and QA

• Distributed Knowledge

– Any single person does not have all the knowledge needed for a full audit.

What is a Viable Solution?

 VIABLE = Positive Security Model:

– Assessment: bullet-proof applications
before production

– Application Firewalls: block, log and
alert against known/unknown attacks

– Behavioral/ Policy-based

• Automatically builds a policy in real time

for the site

• Allows only intended business

interactions

• Maintains intended application behavior

– e.g., Code Red and Nimda blocked without
updates or rules

 Not Viable = Negative

Security Model:

Signature/Rules-based – Blocks

known attacks based on

signatures, heuristics or rules

e.g., - need patch installed or

signatures written to block Code

Red & Nimda

How to Secure Web Applications

 Incorporate security into the lifecycle

• Apply information security principles to all

software development efforts

 Educate

• Issue awareness, Training, etc…

How to Secure Web Applications

 Incorporating security into lifecycle

• Integrate security into application

requirements

• Including information security

professionals in software

architecture/design review

• Security APIs & libraries (e.g. ESAPI,

Validator, etc.) when possible

• Threat modeling

• Web application vulnerability

assessment tools

How to Secure Web Applications

Educate

• Developers – Software security best practices

• Testers – Methods for identifying vulnerabilities

• Security Professionals – Software

development, Software coding best practices

• Executives, System Owners, etc. –

Understanding the risk and why they should be

concerned

OWASP

Bespoke Applications Vs. Commercial Applications

Application Development internal use:

• Bespoke, customized, one-off application

•Audience is not so great: (Users, developers, test)

Vulnerabilities are not discovered too quickly by users.

Vulnerabilities are discovered by hackers, they actively look for them.

Bespoke application = Small audience = Less chance of vulnerabilities being discovered

This is unlike, Say Microsoft XP 210 Million copies sold (http://www.forbes.com/ May2004)

First Line of Defense:

The Developer:

•Writes the code.

•Understands the problem better

than anyone!

•Has the skill set.

•More effective and efficient in

providing a solution

http://www.forbes.com/

OWASP

Complexity Vs Security

As Functionality and

hence complexity increase

security decreases.

Integrating security into

functionality at design time

Is easier and cheaper.

“100 Times More Expensive to Fix

Security Bug at Production Than

Design”

– IBM Systems Sciences Institute

It also costs less in the long-term.
 -maintenance cost

OWASP

A Few Facts and figures (contd)

Ref: http://ganssle.com/Inspections.pdf

Interesting Statistics – Employing code review
IBM Reduces 82% of Defects Before Testing Starts

HP Found 80% of Defects Found Were Not Likely To
Be Caught in Testing

100 Times More Expensive to Fix Security Bug at
Production Than Design”
– IBM Systems Sciences Institute

Promoting People Looking at Code

Improvement Earlier in SDLC

Fix at Right Place; the Source

Takes 20% extra time – payoff is order of magnitude
more.

OWASP

If cars Were Built Like Applications….
1. 70% of all cars would be built without following the original designs and blueprints. The other 30%

would not have designs.

2. Car design would assume that safety is a function of road design and that all drivers were considerate,
sober and expert drivers.

3. Cars would have no airbags, mirrors, seat belts, doors, roll-bars, side-impact bars, or locks, because
no-one had asked for them. But they would all have at least six cup holders.

4. Not all the components would be bolted together securely and many of them would not be built to
tolerate even the slightest abuse.

5. Safety tests would assume frontal impact only. Cars would not be roll tested, or tested for stability in
emergency maneuvers, brake effectiveness, side impact and resistance to theft.

6. Many safety features originally included might be removed before the car was completed, because
they might adversely impact performance.

7. 70% of all cars would be subject to monthly recalls to add major components left out of the initial
production. The other 30% wouldn’t be recalled, because no-one would sue anyway.

8. The after-market for safety devices would include such useful products as training wheels, screen
doors, elastic seatbelts and devices that would restrict the car’s top speed to 3mph, if found to be
unsafe (which would be always).

9. Useful safety could be found, but could only be custom retro-fitted, would take six months to fit and
would cost more than the car itself.

10. A NCT/MOT inspection would consist of counting the wheels and making recommendations on wheel
quantity.

11. Your only warning indicator would be large quantities of smoke and flame in the cab.

12. You could only get insurance from one provider, it would be extremely expensive, require a duplicate
NCT/MOT inspection, and you might still never be able to claim against the policy.

- Denis Verdon

OWASP

How do we do it?

Security Analyst:

Get involved early in SDLC. Security is a function of the
asset we want to secure, what's it worth?

Understanding the information held in the application
and the types of users is half the battle.

Involve an analyst in the design phase and thereafter.

Developer:

Embrace secure application development. (Educate)

Quality is not just “Does it work” Security is a measure
of quality also.

OWASP

How do we do it? (contd)

QA:

Security vulnerabilities are to be considered bugs, the
same way as a functional bug, and tracked in the
same manner.

Managers:

Factor some time into the project plan for security.

Consider security as added value in an application.

– $1 spent up front saves $10 during development and $100 after release

OWASP

Software security tollgates in the SDLC

Requirements

and use cases

Design Test plans
Code

Test

results

Field

feedback

Security

requirements

Risk

analysis
Risk-based

security tests

Static

analysis

(tools)

Penetration

testing
Design

Review

Iterative approach

Code

Review

OWASP

Application Security Risk Categorization

Goal

More security for riskier applications

Ensures that you work the most critical issues first

Scales to hundreds or thousands of applications

Tools and Methodology

Security profiling tools can gather facts

 Size, complexity, security mechanisms, dangerous calls

Questionnaire to gather risk information

 Asset value, available functions, users, environment, threats

Risk-based approach

 Evaluates likelihood and consequences of successful attack

OWASP

Application Security Project Plan

Define the plan to ensure security at the end

Ideally done at start of project

Can also be started before or after development is
complete

Based on the risk category

Identify activities at each phase

Necessary people and expertise required

Who has responsibility for risks

Ensure time and budget for security activities

Establish framework for establishing the “line of sight”

OWASP

Application Security Requirements Tailoring

Get the security requirements and policy right

Start with a generic set of security requirements
Must include all security mechanisms
Must address all common vulnerabilities
Can be use (or misuse) cases
Should address all driving requirements (regulation,
standards, best practices, etc.)

Tailoring examples…
Specify how authentication will work
Detail the access control matrix (roles, assets,
functions, permissions)

Define the input validation rules
Choose an error handling and logging approach

OWASP

Design Reviews

Better to find flaws early

Security design reviews

Check to ensure design meets requirements

Also check to make sure you didn’t miss a requirement

Assemble a team

Experts in the technology

Security-minded team members

Do a high-level penetration test against the design

Be sure to do root cause analysis on any flaws identified

OWASP

Software Vulnerability Analysis

Find flaws in the code early

Many different techniques

Static (against source or compiled code)

 Security focused static analysis tools

 Peer review process

 Formal security code review

Dynamic (against running code)

 Scanning

 Penetration testing

Goal

Ensure completeness (across all vulnerability areas)

Ensure accuracy (minimize false alarms)

OWASP

Application Security Testing

Identify security flaws during testing

Develop security test cases

Based on requirements

Be sure to include “negative” tests

Test all security mechanisms and common
vulnerabilities

Flaws feed into defect tracking and root cause
analysis

OWASP

Application Security Defect Tracking and
Metrics

“Every security flaw is a process problem”

Tracking security defects

Find the source of the problem

 Bad or missed requirement, design flaw, poor implementation, etc…

ISSUE: can you track security defects the same way as
other defects

Metrics

What lifecycle stage are most flaws originating in?

What security mechanisms are we having trouble
implementing?

What security vulnerabilities are we having trouble
avoiding?

OWASP

Configuration Management and Deployment

Ensure the application configuration is secure

Security is increasingly “data-driven”

XML files, property files, scripts, databases, directories

How do you control and audit this data?

Design configuration data for audit

Put all configuration data in CM

Audit configuration data regularly

Don’t allow configuration changes in the field

OWASP

What now?

"So now, when we face a choice between adding

features and resolving security issues, we

need to choose security."

 -Bill Gates

If you think technology can solve your security

problems, then you don't understand the problems

and you don't understand the technology.

 -Bruce Schneier

Using encryption on the Internet is the equivalent of arranging

an armored car to deliver credit-card information from someone

living in a cardboard box to someone living on a park bench.

 -Gene Spafford

REFERENCES

Carnegie Mellon University

Software Engineering Institute

Lecture 3a

The Survivable Network Analysis Method:

Evaluating Survivability of Critical

Systems

Web Application Security

Presented by:

Colin English

Zerflow

Web Application Security 101

Steve Carter
(special thanks to SPI Dynamics)

Copyright © 2005 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

The OWASP Foundation

OWASP

http://www.owasp.org

Integration into the SDLC
(Software Development Life Cycle)

With Eoin Keary
Eoin.keary@owasp.org

